lunes, 31 de marzo de 2014

Equivalencia entre las Funciones Trigonométricas

Otras funciones trigonométricas

Además de las funciones anteriores existen otras funciones trigonométricas, matemáticamente se pueden definir empleando las ya vistas, su uso no es muy corriente, pero si se emplean dado su sentido geométrico, veamos:
El seno cardinal o función sinc (x) definida:

   \operatorname{sinc} \; (x) = \frac{\sin(x)}{x}
El verseno, es la distancia que hay entre la cuerda y el arco en una circunferencia, también se denomina sagita o flecha, se define:

   \operatorname {versin} \; \alpha = 1 - \cos \alpha
El semiverseno, se utiliza en navegación al intervenir en el cálculo esférico:

   \operatorname {semiversin} \; \alpha = \frac {\operatorname {versin} \; \alpha }{2}
El coverseno,

   \operatorname {coversin} \; \alpha = 1 - \sin \;  \alpha
El semicoverseno

   \operatorname {semicoversin} \; \alpha = \frac { \operatorname {coversin} \; \alpha }{2}
El exsecante:

   \operatorname {exsec} \; \alpha = \sec \alpha - 1

 

Funciones trigonométricas recíprocas

En trigonometría, cuando el ángulo se expresa en radianes (dado que un radián es el arco de circunferencia de longitud igual al radio), suele denominarse arco a cualquier cantidad expresada en radianes; por eso las funciones recíproca se denominan con el prefijo arco, cada razón trigonométrica posee su propia función recíproca:
 y= \sin \, x \,
y es igual al seno de x, la función recíproca:
 x = \operatorname {arcsin} \; y \,
x es el arco cuyo seno vale y, o también x es el arcoseno de y.
si:
 y= \cos x \,
y es igual al coseno de x, la función recíproca:
 x = \arccos y \,
x es el arco cuyo coseno vale y, que se dice: x es el arcocoseno de y.
si:
 y= \tan x \,
y es igual al tangente de x, la función recíproca:
 x = \arctan y \,
x es el arco cuya tangente vale y, o x es igual al arcotangente de y.
NOTA: Es común, que las funciones recíprocas sean escritas de esta manera:

   y = \operatorname {arcsin} \; x
   \quad \longrightarrow \quad
   y = \sin^{-1} x \,
pero se debe tener cuidado de no confundirlas con:

   y = \cfrac{1}{\sin x}
   \quad \longrightarrow \quad
   y = \csc x

Ejercicios de Funciones Trigonometricas

Dado el siguiente Triángulo, encontrar todas las Funciones Trigonométricas en
cada caso que se requiera, o las que hacen falta.

   1. Primero encontraremos el valor de la  ecuación que nos hace falta, en éste caso,    
              
        ya que sabemos que la función de  Coseno relaciona Lado Adyacente sobre 
             
        Hipotenusa, ya conocemos dichos  valores, nos faltaría encontrar Lado   
             
        Opuesto:
    2. Ahora conociendo el  valor que nos hacía falta (b), empezaremos a encontrar
        
        cada una de las funciones que hacen  falta:

  3.  Teniendo todas la Funciones procedemos a graficar:


   1. Resolvamos primero la Fracción Mixta  
      Multiplicamos 2 x 3 y el resultado  lo sumamos con el 1 dándonos como  resultado 7/2.
             
  2. Ahora encontramos el valor que hace falta:
  Sustituimos valores:

   3.  Ahora conociendo b, encontramos las funciones correspondientes:

4. Seguidamente graficamos:

           

Funciones Trigonometricas

La trigonometría es una rama importante de las matemáticas dedicada al estudio de la relación entre los lados y ángulos de un triangulo rectangulo y una circunferecia . Con este propósito se definieron una serie de funciones, las que han sobrepasado su fin original para convertirse en elementos matemáticos estudiados en sí mismos y con aplicaciones en los campos más diversos.

Razones trigonométricas

 El triangulo  ABC es un triangulo rectangulo en C; lo usaremos para definir las razones seno, coseno y tangente, del ángulo  \alpha \, , correspondiente al vértice A, situado en el centro de la circunferencia.
  • El seno (abreviado como sen, o sin por llamarse "sĭnus" en latín) es la razón entre el cateto opuesto sobre la hipotenusa.

   \sin \, \alpha =
   \frac{\overline{CB}}{\overline{AB}} =
   \frac{a}{c}
  • El coseno (abreviado como cos) es la razón entre el cateto adyacente sobre la hipotenusa,

   \cos\alpha =
   \frac{\overline{AC}}{\overline{AB}} =
   \frac{b}{c}
  • La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto sobre el cateto adyacente,

   \tan\alpha =
   \frac{\overline{CB}}{\overline{AC}} =
   \frac{a}{b}

Razones trigonométricas inversas


  • La cosecante: (abreviado como csc o cosec) es la razón inversa de seno, o también su inverso multiplicativo:

   \csc \alpha =
   \frac{1}{\sin \; \alpha} =
   \frac{c}{a}
          En el esquema su representación geométrica es:

   \csc \alpha =
   \overline{AG}
  • La secante: (abreviado como sec) es la razón inversa de coseno, o también su inverso multiplicativo:

   \sec \alpha =
   \frac{1}{\cos \; \alpha} =
   \frac{c}{b}
En el esquema su representación geométrica es:

   \sec \alpha =
   \overline{AD}
  • La cotangente: (abreviado como cot o cta) es la razón inversa de la tangente, o también su inverso multiplicativo:

   \cot \alpha =
   \frac{1}{\tan \alpha} =
   \frac{b}{a}
En el esquema su representación geométrica es:

   \cot \alpha =
   \overline{GF}
Normalmente se emplean las relaciones trigonométricas seno, coseno y tangente, y salvo que haya un interés específico en hablar de ellos o las expresiones matemáticas se simplifiquen mucho, los términos cosecante, secante y cotangente no suelen utilizarse.

Concepto de Trigonometria

En términos generales, la trigonometría es el estudio de las razones trigonométricas: seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometria, como es el caso del estudio de las esferas en la geometria del espacio.
Posee numerosas aplicaciones, entre las que se encuentran: las técnicas de triangulacion, por ejemplo, son usadas en astronomia para medir distancias a estrellas próximas, en la medición de distancias entre punto geografico, y en sistemas de navegación por satelites.